Aptar Pharma

SEM-EDS and Raman Spectroscopy to Accelerate Generic Drug Applications

Julie D. Suman, PhD **MVIS 2017**

Agenda

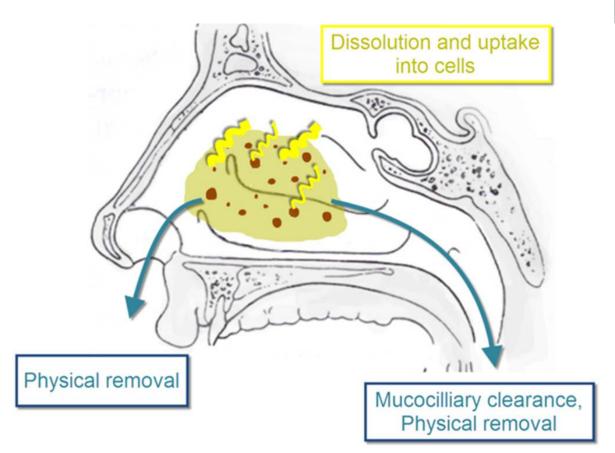
- Development and Regulatory Opportunities
- Application Overview
 - Raman Spectroscopy
 - Scanning Electron Microscopy-Energy
 Dispersive Spectroscopy (SEM-EDS)
- Regulatory Expectations
- Case Studies
 - Nasal Sprays
 - Dry Powder Inhalers
 - Inhalation Suspensions

Questions Received from Generic Drug Developers

- Does the sonication or homogenization process produce the right particle size?
- Which particle engineering process produce in vitro similarity with the RLD?
- Can you quantify particles below 2 microns?
- What is the extent of agglomeration?
- How do I apply for a clinical biowaiver?

Biowaivers

- Typically considered a waiver of clinical bioequivalence studies
- Commonly used for oral solid dosage forms as classified by the BCS (biopharmaceutics classification system)
- In 2016, FDA accepted data using Raman spectroscopy in lieu of a clinical endpoint study for mometasone nasal spray



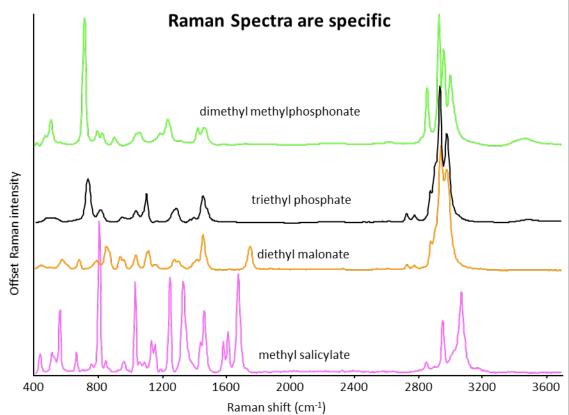
Linking Particle Size to Bioequivalence

- Rate of dissolution will potentially affect local activity and extent of absorption
- Impacts local effect
- Impacts bioequivalence
- Ingredient-specific particle size techniques objectively quantify API particle size and agglomerates



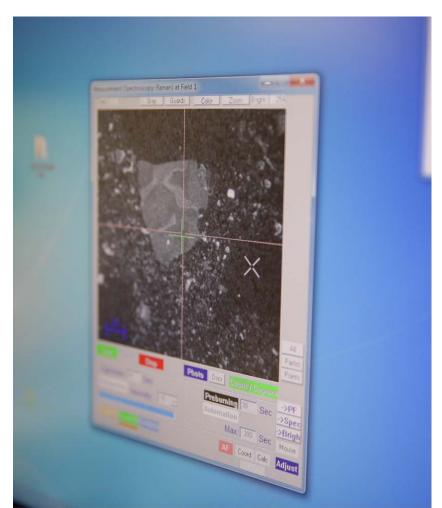
Microscopes on Steroids

- Automated
 - Rapidly analyze large populations of particles
- Identify a particle of interest by elemental or molecular fingerprint
 - Reduce subjectivity
- Quantify size and determine morphology



SEM-EDS Analysis at Gateway Analytical

Raman Spectroscopy


- Based on scattering, rather than absorption, of light
- Laser based technique
- Probes energy of molecular vibrations
- Usually nondestructive and noninvasive
- Suitable for aqueous, gaseous and solid samples
- Inorganic and organic material analysis

Automated Raman Spectroscopy with Raman/LIBS

- The Rap.ID Single Particle Explorer (SPE)
- Combines optical microscopy with automated Raman analysis
- Allows for the counting, sizing and identification of an entire population of particles
- Types of analyses:
 - API-specific particle size distribution
 - Polymorphism studies
 - Agglomerates can be measured

API Specific Particle Size

Material	Size Distribution [µm]											
Material	Totals	≥2.0	≥3.0	≥4.0	≥5.0	≥6.0	≥7.0	≥8.0	≥9.0	≥10.0	≥25.0	
API – Total Particles	61	14	10	5	9	11	5	1	2	4	0	
API – Single Particles	38	14	6	4	4	3	5	1	1	0	0	
Agglomerates	23	0	4	1	5	8	0	0	1	4	0	
MCC (Avicel)	184	94	40	18	10	8	6	1	1	6	0	

SEM-EDS

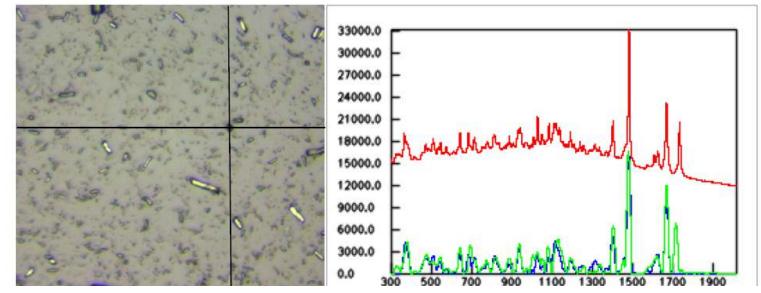
- A microscope that uses a beam of electrons instead of a beam of light
- The electrons interact with the sample prepped on a substrate such as a carbon-rich filter or aluminum coated slide
- Backscatter signal from API enables differentiation from background
- Allows a threshold to be set to detect the API particles
- Excipients can (generally) be ignored

SEM-EDS

- Measurement of particle size and morphology
- Separation of single particles and agglomerates limited (compared to Raman-SPE)
- Technique allows sub-micron detection

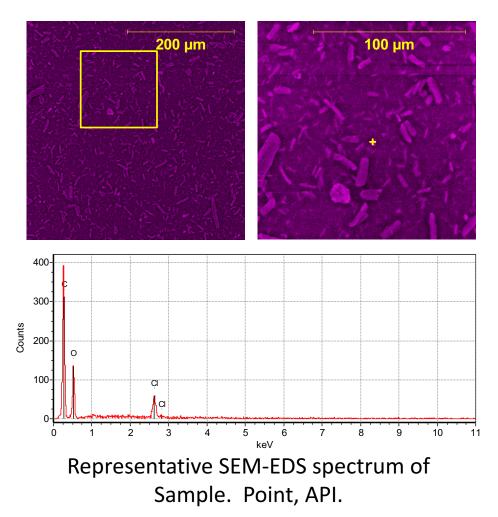
		Size Distribution [µm]											
Material	0.2-1	1-2	2-3	3-4	4-5	5-10	10-25	25-50	50-100	≥100	Total Particles		
API	13	81	70	68	31	29	4	0	0	0	296		

Regulatory Expectations


- Biowaiver applications
 - Request to report particle size results below 2 microns
 - SEM-EDS can offer a solution
- Orthogonal techniques
 - Method validation
 - Biowaiver applications
 - Raman and SEM-EDS supplement each other as well as optical microscopy

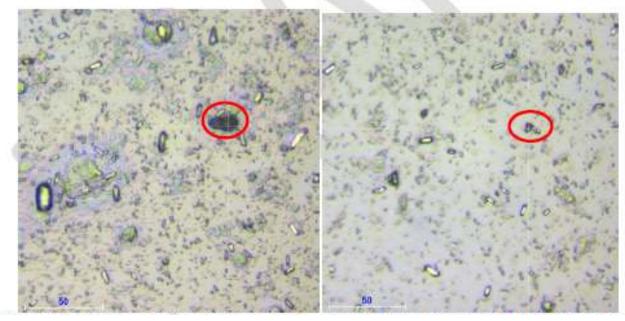
Nasal Spray Case Study

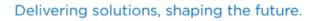
- Biowaiver Application-Raman-SPE & SEM-EDS
- Method feasibility
 - Build library of formulation components
 - Assess ability of instrumentation to identify and size API of interest
 - Determine appropriate number of particles to count


Representative 50x image (center of crosshair) and Raman spectrum collected

Particle Size Distribution

• SEM-EDS-1000 particles counted per sample

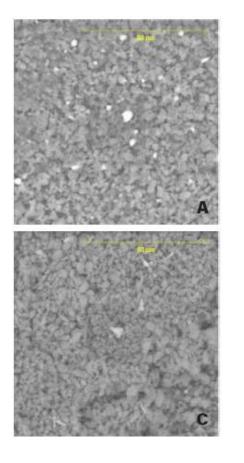

	Т	est Produc	t	RLD Product					
Sample	D10	D50	D90	D10	D50	D90			
1	0.90	1.60	3.00	0.90	1.50	2.60			
2	0.90	1.50	2.60	0.90	1.50	2.60			
3	0.90	1.40	2.50	0.90	1.50	2.50			
Average	0.90	1.50	2.70	0.90	1.50	2.57			
SD	0.00	0.10	0.26	0.00	0.00	0.06			

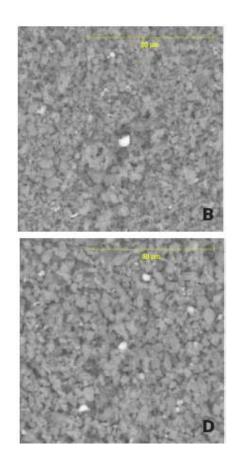


Agglomerates (Raman-SPE)

Matarial	Size Distribution [µm]											
Material	Totals	≥2.0	≥3.0	≥4.0	≥5.0	≥6.0	≥7.0	≥8.0	≥9.0	≥10.0	≥25.0	
Agglomerates	27	0	3	9	6	1	2	2	3	1	0	
Single Mometasone Furoate Monohydrate Particles	85	40	20	9	5	3	4	3	0	1	0	
API + Agglomerates	112	40	23	18	11	4	6	5	3	2	0	

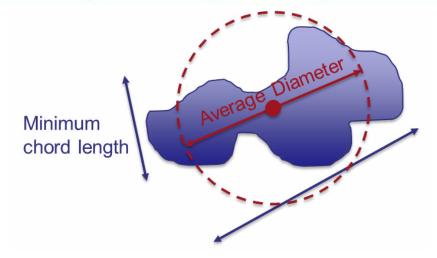
Representative 50x image (center of white crosshair) of agglomerated particles


Sub-Micron Particle Size Analysis (SEM-EDS)


Gateway Analytical Sample #			Size Distribution [µm]- Dave												
	Material	0.2-0.5	0.5-1	1-1.5	1.5-2	2-3	3-4	4-5	5-10	10-25	25-50	50-100	≥100		
CI-12056A	API	3	154	311	224	213	82	13	0	0	0	0	0		
CI-12056B	API	3	145	338	244	233	34	3	0	0	0	0	0		
CI-12056C	API	2	181	367	236	168	42	4	0	0	0	0	0		

Dry Powder Inhalers

- Application to characterize in vitro similarity
 - RLD capsule based formulation and three test formulations
- Link particle size and morphology to aerodynamic performance
 - SEM-EDS analysis from Next Generation
 Impactor Stage 4



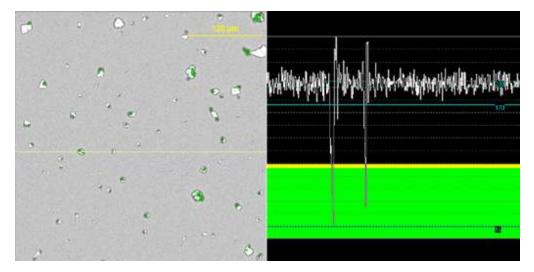
Morphology Aspects

Metric (µm)		Average	Diameter	Aspect Ratio						
	RLD	Micronized	'MMAD'	'MMAD+'	RLD	Micronized	'MMAD'	'MMAD+'		
Dv10	0.66	0.67	0.56	0.59	1.29	1.29	1.44	1.48		
Dv50	1.01	1.03	0.91	1.01	1.86	1.87	2.78	2.61		
Dv90	1.69	1.66	1.64	1.97	3.43	3.59	7.40	6.85		

Apect Ratio = max chord length/ perpendicular chord length Image courtesy of Circassia

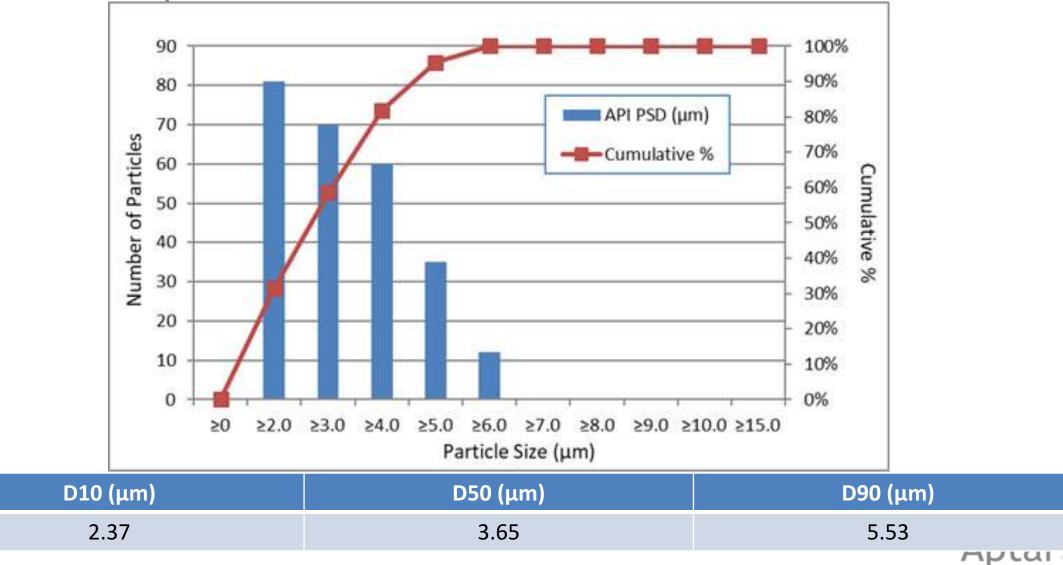
Inhalation Suspensions

- FDA Draft Guidance on Budesonide
- In Vitro Options for Bioequivalence
 - Unit dose content
 - Mean nebulization time and mean delivered dose
 - Breath simulation per USP <1601>
 - Particle size distribution
 - FDA emphasis on specificity, sensitivity and agglomerates
 - Aerodynamic particle size distribution (APSD)
 - Droplet size by Laser Diffraction
- Raman spectroscopy and SEM-EDS offer combined approach to FDA expectations



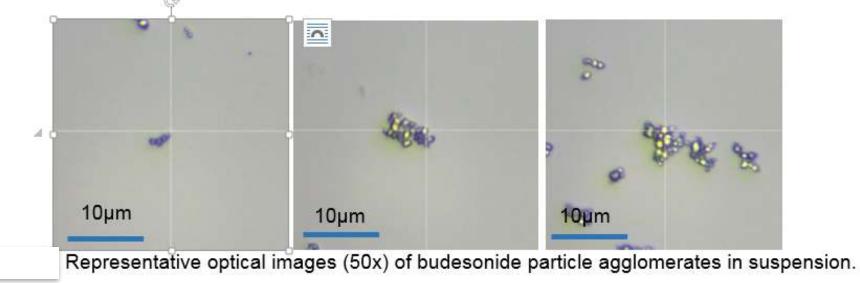
Pari LC + and Pari Master Compressor

Methodology


- Micronized budesonide is the only solid component in the formulation
- Centrifuged formulation to separate API
- Collect API particles and re-suspend in ultra filtered DI water
- Method feasibility to confirm analysis of particles of interest
 - Raman spectra confirmed
 - SEM-EDS elemental determination (carbon and oxygen)

Setting thresholds for detection using SEM-EDS; black =background; yellow= detected by automated analysis, not measured; green= measured by automated analysis

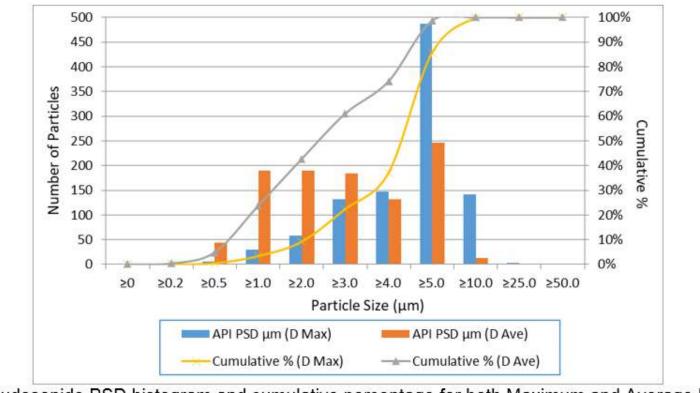
Budesonide PSD by Raman SPE



pharma

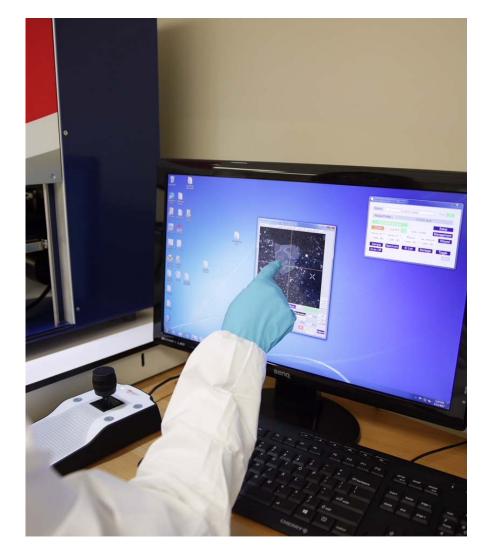
Agglomerates

Length (µm) Budesonide API	Total Particles	≥2.0	≥3.0	≥4.0	≥ 5.0	≥6.0	≥7.0	≥8.0	≥9.0	≥10.0	≥15.0
All Particles	100	8	11	8	9	7	6	6	6	17	22
Single Particles	27	8	11	6	1	1	0	0	0	0	0
Agglomerates	73	0	0	2	8	6	6	6	6	17	22


Table 3. Particle Size Distribution of Particles in Suspension, based on length

Sub-Micron Particles

Budesonide API (µm)	Total Particles	≥0.20	≥0.50	≥1.0	≥2.0	≥3.0	≥4.0	≥5.0	≥10.0	≥25.0	≥50.0
DMAX	1,002	0	5	29	58	132	147	487	141	3	0
DAVE	1,002	4	44	189	190	184	132	246	13	0	0



Budesonide PSD histogram and cumulative percentage for both Maximum and Average Diameters.

Conclusions

- Raman Spectroscopy and SEM-EDS offer combined approaches
 - Particle ID
 - Particle size including submicron particles
 - Agglomerates
- Tools to Answer Questions
 - Formulation comparability
 - Manufacturing process similarity
 - Influence of morphology
 - Biowaiver applications

Acknowledgements

- **Gateway Analytical**
 - Angela Flowers
 - Emily Landsperger
 - Paige Cohen
 - David Exline
- Circassia
 - Oliver Croad
 - Jacob Harker

A ChemImage Company

